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Abstract

Estimation of the autoregressive moving average (ARMA) parameters of a stationary
stochastic process is a problem often encountered in the signal processing literature.
It is well known that estimating the moving average (MA) parameters is usually more
difficult than estimating the autoregressive (AR) part, especially if the zeros are lo-
cated close to the unit circle. In this paper we present four linear methods for MA
parameter estimation (i.e., methods that involve only linear operations) and compare
their performances first in a case when the zeros are located far away from the unit
circle and secondly in a presumably harder case when the zeros are located very close
to the unit circle.

1 Introduction

Consider the following MA equation

y(t) = e(t) + b1e(t− 1) + · · ·+ bne(t− n)

= B(z−1)e(t) t = 0, . . . , N − 1 (1)

where
B(z−1) = 1 + b1z

−1 + · · ·+ bnz−n (2)

and where {e(t)} is a white noise sequence with variance σ2. N is the number of available
samples. The model order n is assumed to be known in the following. If n is unknown it
can be estimated using, for example, an information criterion rule (see, e.g., [1]).

Our problem lies in estimating the parameters {bk} from the measured signal {y(t)}N−1
t=0 .

Several methods have been developed in the past for solving this problem (see, e.g., [2] [3]
and the references therein). As long as the zeros associated with the polynomial in (2)
are located reasonably far away from the unit circle most known MA parameter estimation
methods perform satisfactorily. However, when the zeros are located close to the unit circle
the problem becomes more intricate, and the accuracy of the parameter estimates usually
decreases.

In this paper we will compare four linear MA parameter estimation techniques to see
how their performances differ from one another, especially in the two cases when the zeros
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are located close to respectively far away from the unit circle. We consider the well known
Durbin’s method (abbreviated DM in the following) [4] which is commonly used for estima-
tion of the {bk} in (1). The second method considered is called the inverse covariance (or
correlation) method (abbreviated ICM here) (see, e.g., [5] [6]). Finally, we consider two MA
parameter estimation techniques based on the cepstrum, or the vocariance sequence (see,
e.g., [7] - [13]). We call these two techniques the vocariance recursion method (VRM) and
the vocariance ESPRIT method (VEM) (see [11] [12] and also below). The outline of VEM
below includes a novel parameter estimation approach specifically designed for the problem
when the zeros are located close to the unit circle. All methods are described in a concise
and simple manner.

In Section 2 brief descriptions of these four methods (DM, ICM, VRM, and VEM) are
presented. In Section 3, we show a simulation study based on two second-order MA exam-
ples in which we compare the four techniques with a nonlinear least squares (NLS) search
method, in terms of estimation accuracy and computational speed. Finally, in Section 4, we
give some conclusions and suggestions on which technique of those above should be preferred
in a specific scenario.

2 Methods

2.1 Durbin’s method (DM)

Durbin’s method [4] is one of the most widely used techniques for MA parameter estimation.
It is also known as the 2-stage LSM (least squares method) (see, e.g., [2] [3] and the references
therein for more information). The two stages can be outlined as follows:

Step 1. The first step consists of fitting an AR model of order m > n to {y(t)}. Once m
has been specified, the estimated AR parameters {âk}m

k=1 can be obtained via LSM. Hence,
estimates {ê(t)} of the noise sequence {e(t)} can be computed as

ê(t) = Â(z−1)y(t) t = 0, . . . , N − 1 (3)

where
Â(z−1) = 1 + â1z

−1 + · · ·+ âmz−m.

Step 2. Using {ê(t)} we can write

y(t)− ê(t) ≈ [b1 . . . bn]




ê(t− 1)
...

ê(t− n)


 (4)

for t = 0, . . . , N − 1, from which estimates {b̂k} of {bk} can be obtained via LSM. The
model order m can be selected via the Akaike’s information criterion (AIC) or the Bayesian
information criterion (BIC) (see, e.g., [1]). However, a more expedient rule for selecting m
is m = 2n, which we will use in the following.

2.2 Inverse covariance method (ICM)

The main idea behind this technique is outlined below. For more information, see, e.g., [5]
[6] and the references therein.
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The standard covariance sequence of a data string {y(t)} is given by

rk =
1

2π

∫ π

−π

Φ(ω)eikωdω k = 0,±1,±2, . . . (5)

where Φ(ω) is the power spectral density of {y(t)}. As the name suggests, the inverse
covariance sequence is given by

ρk =
1

2π

∫ π

−π

1

Φ(ω)
eikωdω (assuming Φ(ω) > 0 , ∀ω). (6)

For notational convenience, let {Φp} denote the values taken by the spectrum at the Fourier
frequency grid points:

ωp =
2π

N
p p = 0, . . . , N − 1. (7)

The periodogram estimate of Φp is given by (see, e.g., [3]):

Φ̂p =
1

N

∣∣∣∣∣
N−1∑
t=0

y(t)e−iωpt

∣∣∣∣∣

2

(8)

for p = 0, . . . , N − 1. Using (8) we can estimate {ρk} as

ρ̂k =
1

N

N−1∑
p=0

1

Φ̂p

eiωkp k = 0, . . . ,
N

2
(9)

(for k > N/2 the sequence is mirror symmetric). An alternative spectral estimator Φ̂p

based on the long AR polynomial in (3) has also been tested. However, the difference in
performance between the two estimators was small, and hence we will use the estimator in
(8) since it has lower computational complexity.

Since
1

Φ(ω)
=

1

σ2|B(eiω)|2 , (10)

which is an AR spectrum, it follows that {bk} and {ρk} are related via the Yule-Walker
equations. Hence we can get estimates {b̂k} from {ρ̂k} via the Yule-Walker method (see,
e.g., [2] [3]).

2.3 Vocariance recursion method (VRM)

This technique is based on estimation of the cepstrum, or the cepstral coefficients, or, yet,
the vocariance sequence (see, e.g., [7] - [10]).

By definition, the vocariance sequence {ck} satisfies

ln Φ(z) =
∞∑

k=−∞
ckz

−k (11)

where, in the present scenario, Φ(z) = σ2B(z)B(z−1). It follows that

ln B(z) =
∞∑

k=1

ckz
k (12)
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which implies, by differentiation with respect to z, that

B′(z)

B(z)
=

∞∑

k=1

kckz
k−1 ⇔

n∑

k=1

kbkz
k−1 =

n∑

k=0

bkz
k

∞∑

k=1

kckz
k−1. (13)

The vocariances {ck} can be consistently estimated via

ĉk =
1

N

N−1∑
p=0

ln(Φ̂p)e
iωkp k = 1, . . . ,

N

2
(14)

(for k > N/2 the sequence is mirror symmetric). Note that the right hand side in (13) can
be rewritten as

n∑
p=0

∞∑

k=1

kckbpz
p+k−1

=
∞∑

j=0

[
n∑

p=0

(j − p + 1)cj−p+1bp

]
zj (15)

(assuming cj = 0 for j ≤ 0). The left hand side in (13) can be rewritten as

n−1∑
j=0

(j + 1)bj+1z
j. (16)

Equating (15) and (16) leads to the recursion (b0 = 1):

bj =
1

j

j−1∑
p=0

(j − p)cj−pbp j = 1, . . . , n (17)

which is a triangular linear system in {bj}. Replacing {ck} in (17) by their estimates {ĉk}
obtained from (14) gives us the desired estimates {b̂j} of {bj}.

More details about this type of MA parameter estimation method, and its extension to
ARMA signals, can be found in [11].

2.4 Vocariance ESPRIT method (VEM)

The final technique is also based on estimation of the vocariance sequence. The main idea
behind this approach was partly described in [12]; however, [12] includes a nonlinear esti-
mation step which is here replaced by the ESPRIT method (see, e.g., [3]). The resulting
technique is not really a linear method since it involves a singular value decomposition (SVD)
step. However, it can be considered to be “quasi-linear”, since the SVD is such a reliable
operation. For more information about the relationship (20) below between {bk} and the

4



vocariance sequence, which lies at the basis of VEM, see [13].
Let {1/zp} be the zeros of B(z)

B(z) =
n∏

p=1

(1− zpz) |zp| < 1. (18)

Then

ln B(z) =
n∑

p=1

ln(1− zpz) = −
n∑

p=1

∞∑

k=1

1

k
zk

pzk. (19)

Comparing (12) and (19) gives

−kck =
n∑

p=1

zk
p . (20)

Replacing {ck} in (20) by {ĉk} obtained from (14) gives

−kĉk ≈
n∑

p=1

zk
p k = 1, . . . , M (21)

where M ≥ 2n is a user parameter. Note that the right hand side of (21) can be seen as a
damped sinusoidal model. Hence we can use ESPRIT (see, e.g., [3]) to estimate {zp} from

{−kĉk}. Once {zp} have been estimated we can obtain estimates {b̂j} of {bj} via (18).
Regarding the choice of M we note that even though the errors in {ĉk} have the same

variance (see [9]), the errors in {kĉk} have increasing variance as k increases. Moreover the
“modes” {zk

p} in (21) may go quickly to zero with increasing k. Hence we should not choose
M too large. In the following we will use M = 4n, which is a reasonable choice for several
practical values of n.

3 Numerical Examples

The four MA parameter estimation techniques (DM, ICM, VRM, and VEM) will be com-
pared with one another in two rather different numerical examples. We will also compare
the performances of the above four linear methods to that of a nonlinear least squares (NLS)
search method. The estimation criterion of the NLS method can be written as

min
{bk}

N−1∑
t=0

[
1

B(z−1)
y(t)

]2

. (22)

NLS achieves the Cramér-Rao lower bound (CRB) in the Gaussian data case, for N À 1 (see,
e.g., [3] [14]). Due to the high accuracy of the NLS approach, it will be used as a reference
in the comparative performance study below. Iterative nonlinear methods require adequate
initial parameter estimates to prevent the search algorithm from stopping at local minima.
In the numerical examples below the initial parameter values for the iterative NLS search
are obtained via a special four-stage LS-IV (least-squares instrumental-variable) algorithm
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(see [14] for more information).
As a performance measure we consider the total variance (TV) of {b̂k}

TV(b̂) =
n∑

k=1

E
[
b̂k − bk

]2
(23)

where
b̂ = [1 b̂1 · · · b̂n]

and where E is the expectation operator which is estimated from 1000 Monte Carlo runs for
each method. We will show the TV for DM, ICM, VRM, VEM, and NLS for N=128, 256,
512, 1024, and 2048. In addition we will show the computational time (in seconds) required
to perform the 1000 Monte Carlo runs for each considered technique, also versus N .

Example 1 Consider the following MA sequence

y(t) = e(t) + 0.55 e(t− 1) + 0.15 e(t− 2)

t = 0, . . . , N − 1

where {e(t)} is a white Gaussian noise sequence with zero mean and unit variance. The
corresponding zeros are located at z1,2 = −0.275 ± 0.273i which correspond to a distance
|z1,2| = 0.387 from the origin.

In Fig. 1 we show the TV(b̂) for the five methods for different values of N . In this
example, with zeros far away from the unit circle, DM and VRM perform very well, having
parameter estimation accuracies comparable to that of NLS. ICM shows a lower performance
and VEM does not provide reliable parameter estimates in this case. The low performance
of VEM can be explained by the fact that zeros close to the origin corresponds to heavily
damped sinusoids which are hard to estimate using an ESPRIT-based method for a low value
of M . The computational time required to perform 1000 Monte Carlo runs using each of the
five techniques is presented in Fig. 2. The differences between the four linear methods (DM,
ICM, VRM, and VEM) are small. The main observation from Fig. 2 is that all four linear
methods are significantly faster (about 100 times) than NLS. In addition, the time required
for NLS depends significantly on the considered example, the number of parameters to be
estimated, the location of the zeros, and the initial estimates, whereas the computational
time required for the other techniques does not depend as much on the data.

Example 2 Next consider the MA sequence

y(t) = e(t)− 1.4 e(t− 1) + 0.98 e(t− 2)

t = 0, . . . , N − 1

where {e(t)} is again a white Gaussian noise sequence with zero mean and unit variance.
The corresponding zeros are located at z1,2 = 0.7 ± 0.7i which correspond to a distance
|z1,2| = 0.99 from the origin.

The obtained values of TV(b̂) are presented in Fig. 3 for the five methods for different
values of N . In this example the zeros are located very close to the unit circle, which usually
leads to a harder estimation problem than that of Example 1. In this case VRM and VEM
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perform better than DM and ICM. None of the linear methods achieves the performance of
the NLS approach. The required time to perform 1000 Monte Carlo runs for each of these
five techniques is similar to Example 1 and the corresponding results are therefore omitted.

4 Conclusions

VRM was the only linear method which performed satisfactorily in both examples above.
Even though DM is a commonly used MA estimation technique it is well known that its
estimation accuracy degrades when the zeros are close to the unit circle for a fixed value of
m. For such scenarios VRM or VEM can be appealing alternatives. The performance of
DM can be improved by selecting a larger value of m, but at the expense of an increased
computational complexity. From the simple simulation study above we conclude that the
parameter estimation accuracy of ICM is lower than e.g. that of VRM. The significant
difference in the performance of VEM in the two examples can be explained by the fact that
an ESPRIT-based method can estimate sinusoidal components (in this case corresponding
to zeros close to the unit circle) very accurately, however the estimation performance for
heavily damped sinusoids (corresponding to zeros close to the origin here) is poor since we
have to keep M rather small.
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Figure 1: The TV(b̂), versus N , for the five methods (DM, ICM, VRM, VEM, and NLS) in
Example 1.
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Figure 2: Time, in seconds, required to perform 1000 Monte Carlo runs, versus N , for each
of the five methods (DM, ICM, VRM, VEM, and NLS) in Example 1.
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Figure 3: The TV(b̂), versus N , for the five methods (DM, ICM, VRM, VEM, and NLS) in
Example 2.
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