The Yule Walker Equations for the AR Coefficients

Gidon Eshel

If you assume a given zero-mean discrete timeseries {x;}{’ is an AR process,
you will naturally want to estimate the appropriate order p of the AR(p),

Tit1 = Q12 + Gai—1 + - - + OpTi—pr1 + &i1 (1)

and the corresponding coefficients {¢;}. There are (at least) 2 methods, and those
are described in this section.

1 Direct Inversion

The first possibility is to form a set of direct inversions,

1.1 p=1

With
Tiv1 = 0127 + iy,

one can form the over-determined system
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which can be readily solve using the usual least-squares estimator
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where ¢; and r; are the ith autocovariance and autocorrelation coefficients, respec-
tively.



1.2 p=2

With
Tiv1 = P12 + Poxi1 + &ian,

start by forming the over-determined system
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Unlike the previous p = 1 case, trying to express the solution
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analytically is not trivial. We start with
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Next, let’s use the fact that the timeseries is stationary, so that autocovariance
elements are a function of the lag only, not the exact time limits. In this case,
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Similarly,
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which, exploiting again the stationarity of the timeseries, becomes
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Combining the 2 expressions, we have
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Breaking this into individual components, we get
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Of course it is possible to continue to explore p > 3 cases in this fashion.
However, the algebra, while not fundamentally different from the p = 2 case,
quickly becomes quite nightmarish. For example, for p = 3,
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whose determinant, required for the inversion, is the cumbersome-looking

2
det (ATA) = ¢, (cg —2c} + 012 _ c%) =, [ci +2¢2 (rg — 1) — cg] :

0

which, on pre-multiplying by the remainder matrix, yields very long expressions.
Fortunately, there is a better, easier way to obtain the AR coefficient for the
arbitrary p, the Yule-Walker Equations.



2 The Yule-Walker Equations
Consider the general AR(p)
Tip1 = Q12 + Gawi—1 + -+ + PpTi—p1 + iy
2.1 Lag1l
e multiply both sides of the model by x;,
TiTiy1 = jé (PjziTimji1) + xiiv,

where 7 and j are the time and term indices, respectively,

e take expectance,
p
(iziv1) = D (@j(mimi—ji1)) + (Ti&it1)
j=1

where the {¢;}s are kept outside the expectance operator because they are
deterministic, rather than statistical, quantities.

e note that (z;&;+1) = 0 because the shock (or random perturbation) & of the
current time is unrelated to—and thus uncorrelated with—previous values of
the process,

p
(TiTip1) = 21 (¢j{wiTi_js1))
j:
e divide through by (N—1), and use the evenness of the autocovariance, c¢_; = ¢,

p
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e divide through by c,,
p
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2.2

2.3

Lag 2

multiply by x;_1,
p
Ti1Zit1 = Y (Pjxic1imjr1) + Tim1&iva,
j=1
take expectance,
p
(Ti1wir) = D0 (d5(Tic1zij1) + (Xi1&ivr)
j=1
eliminate the zero correlation forcing term
p
(i1zis1) = X (@(im1mi—jr1))
j=1
divide through by (N — 1), and use ¢_; = ¢,
p
C2 = . jcj—
j=1
divide through by c,,
p
ro = ¢jrj-2.
j=1
Lag k
multiply by x; 1,
p
Ti—kr1Lit1 = Z (¢j$z‘—k+1l‘z—j+1) + i k1841,
j=1
take expectance,
p
(Tikr1miv1) = D (05 (Tickr1Tijr1)) + (Tip1&irn)
j=1
eliminate the zero correlation forcing term
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e divide through by (N — 1), and use c_; = ¢,
P
k= 2. DiCjk
j=1

e divide through by c,,
p
T = D OiTi k-
=1

2.4 Lagp

e multiply by z;_,_1,
p
Li—p+1Tiy1 = Z (¢j$i—p+1$i—j+1) + xi—p+1fz’+1;
j=1
e take expectance,
p
(Tipt1Tiv1) = > (ij (Tipr1Tizjr1)) + (@imp1&it1)
j=1
e climinate the zero correlation forcing term
p
(Tipi1Tit1) = Zl (0(Ti—pr1Ti-ji1))
j:
e divide through by (N — 1), and use ¢_; = ¢,

p
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e divide through by c,,
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2.5 Putting it All Together

Rewriting all the equations together yields

o= ¢1ire + @ar1t + P3re A+ o+ QpaTp 2+ Qprpa
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Ty = Qirp—1 + PaTp2 + P3rp_3 + -+ QT + Pyl
which can also be written as
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Recalling that r, = 1, the above equation is also
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or succinctly
R® =r. (2)

Note that this is a well-posed system (with a square coefficients matrix R), i.e., with
the same number of constraints (equations, R’s rows) as unknowns (the elements
¢; of the unknown vector ®). Further, R is full-rank and symmetric, so that
invertability is guaranteed,

d=Rr
3 The Yule-Walker Equations and the Partial Autocorre-
lation Function

Equation 2 provides a convenient recursion for computing the pacf. The first step
is to compute the acf up to a reasonable cutoff, say p ~ N/4. Next, let r() denote
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Equation 2’s rhs for the p = i case. Similarly, let R denote the coefficient matrix
for the same case. Then

e looponi, 1 <1<p

— compute R® and r®

— invert for é)(i),

$0 = (RO) ' ) = P2

— discard all ¢; for 1 < j <i—1

— retain ¢;,

~

pacf(i) = ¢;
e end loop on ¢

e plot pacf(i) as a function of i.



